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Abstract-The effects of elastic property on the deformation and breakup of an uncharged drop in a uniform
electric field are investigated theoretically using the second-order fluid model as a constitutive equation. Two
dimensionless numbers, the electric capillary number (C) and the Deborah number (De), the dimensionless param-
meters governing the problem. The asymptotic analytic solution of the nonlinear free boundary problem is deter-
mined by ufilizing the method of domain perturbation in the limit of small mathcal C and small De. The as-
ymptotic solution provides the limiting point of C above which no steady-state drop shape exists. The linear sta-
bility theory shows that the elastic property of fluids give either stabilizing or destabilizing effect on the drop,

depending on the deformation mode.
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INTRODUCTION

Recently, the dispersion of two immiscible phases has been
the subject of intense investigation from both an experimental
and a theoretical point of view. Common industrial processes
involve dispersion of one fluid phase into another, either to
form an emulsion, or to mcrease the interfacial area between
the two phases for more efficient heat and mass transfer. In this
paper, we are concerned with one aspect of this general prob-
lem; namely, deformation of the interface and linear stability of
a single droplet immersed in a continuous phase under the
action of a uniform electric field at small Reynolds numbers.

When an uncharged drop is suspended in a dielectric liquid
n an external electric field, there is a discontinuity in the stress
field at the drop interface. Thus, the interface is deformed from
its initial spherical shape due to the mismatch of the normal
component of the electric stress [Garton and Krasucki 1964;
Taylor 1964; Basaran and Scriven 1989]. In addition, if the
conductivities of both phases cannot be neglected, that is, when
the two phases are leaky dielectric matenals, free charges ap-
pear at the drop interface. The action of an electric field on
these charges sets the fluids in motion and forming toroidal
circulation patterns inside and outside the droplet, which 1s
otherwise quiescent. However, the charge on the two hemi-
spheres of a drop in a uniform electric field is antisymmetric in
such a way that the net surface charge is zero [Taylor 1966;
Melcher and Taylor 1971; Torza et al., 1971; Arp et al., 1980,
Miksis, 1981; Vizika and Saville, 1992; Ha and Yang, 1995,
Saville, 1997, Ha and Yang, 1998; Ha and Yang, 19994, b|.

One of the potential technological applications where these
effects are prevalent is the processing of a two-phase polymer
blend. In this case, the morphology of the dispersed phase,
which determines generally the mechanical and other physical
properties of the polymer blend, is a crucial factor. A number
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of studies have considered the underlying physics and process-
ing of polymer blend to elucidate the relationship between mor-
phology and properties of the blend, and at the same time to
obtain the desired morphology by applying an external field.
Electric field, among other external fields which are used in
order to evolve the morphology of the polymer blend, has a
few unique advantages including easy manipulation of the field
direction and intensity. The dispersed phase of the polymer
blend can be easily aligned and stretched to the desired direc-
tion by applying the electric field externally.

During the past decade, a few studies concerning the mor-
phology evolution in an immiscible two-phase polymer blend
by an external electric field have been reported [see, for exam-
ple, Monya et al., 1986; Venugopal and Krause 1992; X1 and
Krause 1998]. However, most of these studies utilized theory
developed for Newtonian fluids in order to predict the drop de-
formation. In spite of the non-Newtonian nature of the polymer
solutions used, the experimental results did not deviate largely
from the predicted theory in the limit of small deformation.
However, it has not been confirmed that the stability 1s not
influenced by the viscoelasticity. Unlike the Newtonian fluids,
there have been relatively few theoretical mvestigations rele-
vant to the electrohydrodynamic deformation and stability of
non-Newtonian fluids. This is most likely a result of the antici-
pated uncertainties in selecting of an appropriate constitutive
model for non-Newtonian fluids, as well as the obvious diffi-
culty in solving the equations of motion after the choice has
been made. In our opinion, however, it 1s sufficient to consider
the influence of small instantaneous departures from Newto-
nian flud behavior acting over a large time for this type of
problem, at least, from a qualitative point of view.

It is worthwhile to note that the appropriate constitutive model
for non-Newtonian fluds which exhibit a slight departure from
Newtonian behavior is well-known to be the Rivlin-Ericksen
fhud, provided that the motion of fluids are both weak and
slow in a rheological sense. This model may be obtained, via
the socalled ‘retarded-motion” expansion, from almost all of the
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currently popular nonlinear constitutive models [Bird et al,,
1987]. Successive terms in the expansion systematically ac-
count for the deviation from Newtonianbehavior associated
with elastic effects. A great deal of phy-sical nsight about
elastic effects can be gained by solving flow problems using
ordered-flud models, even though the ordered-fhuds accu-
rately describe neither the dependence of viscosity on the shear
rate nor the full range of the time-dependent behavior. Further-
more, the second-order fhuid can be prepared experimentally by
conventional ‘Boger® fluid formation technique [Mackay and
Boger, 1987, Tam and Tiu, 1989].

In the present study, we consider theoretically the related
problem of the deformation and linear stability of a neutrally
buoyant drop in a uniform electric field in otherwise quiescent
fluid. The suspending fluid and the fluid inside the drop are
assumed to be adequately modeled as second-order fluids. Like
most problems, it 1s impossible to find exact analytical solu-
tions for the deformation and stability of a drop; thus, we tumn
to a perturbation technique that can be used to develop solu-
tions to flow problems for the retarded-motion expansion at
small Deborah numbers. It is noteworthy that since the re-
tarded-motion expansion 1s itself restricted to a small Deborah
number, no significant additional limitations are imposed by
the use of the perturbation procedure. However, even when the
retarded-motion expansion 1s used correctly, it 1s important to
note that retaining more terms than the second-order terms in
the perturbation solutions often results in series with ‘diminish-
ing return’. This clearly indicates that while retention of sec-
ond-order terms gives both a qualitative and a quantitative de-
scription of the deviations from Newtonian behavior, the inclu-
sion of third- and higher-order terms provides only minor im-
provements to the solution. As a matter of fact, the second-
order terms can be determined usually with a moderate analyti-
cal effort, but higher-order terms require increasingly tedious
and lengthy algebraic developments. Due to these restrictions,
the retarded motion expansion is used just through second-
order terms for the present analytical investigations on the
deviation {rom Newtonian behavior. The primary thrust of our
research is a systematic assessment of the coexisting role of
electric field and the elasticity on the drop deformation and
stability.

THE PROBLEM STATEMENT

We begin by considering the steady deformation and linear
stability of a neutrally buoyant drop suspended in an infinite
immiscible fluid under a uniform electric field of strength E*.
The two fluids are assumed to be both incompressible and
Rivlin-Encksen fhuds, with zero shear viscosities L, for the
suspending phase and [i; for the fluid inside the drop. Further-
more, a fluid drop 1s assumed to be a sphere of radius o in the
absence of the electric field. The electrical resistivity of the
drop phase is denoted as 3, and the permittivity as €. Corres-
ponding properties of the ambient flud are ¥ and &, respec-
tively, while the interfacial tension between the drop and the
continuous phase 1s y. As referred to previously, X and ¥ are
not infinite even if they may be very large under the leaky
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Fig. 1. Spherical co-ordinate system (r, 8, p) of the drop in a

uniform electric field.

dielectric-fluid assumption. In addition, we adopt a co-ordinate
reference system with a fixed origin O at the centre of the drop
as illustrated in Fig. 1. In the absence of an electric field, the
fluids are quiescent and the drop remains spherical owing to
interfacial tension.

The model selected to represent the electric-field part of the
problem 1s deduced from Maxwell’s equation by ignoring mag-
netic effects which are assumed to be insignificant in this study.
A further simplification is that the relaxation time for free charges
in liquids 1s short. By 1gnonng the rates of accumulation and
convection of charges and by considering isotropic fluids where-
in linear relations prevail between the appropriate vector quan-
tities {e.g. current and electric field), the electric fields can be
calculated from a steady-state model of electrostatic phenom-
ena. In this case, the governing equations for the electrostatic
potentials V and V inside and outside the drop are the quasi-
steady Laplace’s equations:

ViV=0, VV=0 . (1)
In addition, the appropriate boundary conditions are as follows:
V1 ¢0s0 as 1—re0 (2
V is bounded at 1=0 , (3)
E-t-E-t at =1+1, “
iE-n:%]:}n at r=1+f . (5)

Here, (2) and (3) describe a uniform electrostatic potential far
from the drop and a finite potential at the drop centre, respec-
tively. In the above formulation, the drop interface is defined
by r=1+f in which f is the unknown shape function and de-
notes the departure from sphericity. The continuity of tangen-
tial component of the electric fields at the interface and of the
conduction current normal to the interface are expressed mn (4)
and (5). In the latter two equations, E and E denote the elec-
tric fields developed in both fluid phases and can be related to
the electrostatic potentials as E=—VV and E=—VV. It should be
noted that the above equations are nondimensionalized with
respect to the characteristic vanables such as

l=a, V,=E"a, E.=E" . ()]
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Since the electric field is not uniform due to the presence of a
fluid drop, electric traction is exerted on the interface. The
electric traction can be expressed in terms of the electric stress
tensor, which is the so-called Maxwell’s stress tensor, defined
as

TE:(VVVV—%IIVV}E). @)

In the above definition, the stress 1s nondimensionalized by
the characteristic value £(E™’. The role of the electric stress in
the drop deformation can be seen conveniently by decompos-
ing the electric traction into normal and tangential components
to the interface. Due to the normal stress imbalance, the drop
cannot remain spherical and must be deformed n order to
eliminate this imbalance. Further, the discontinuity of the tan-
gential stresses 1s responsible for the boundary-drven flow
which cancels exactly the tangential stress mismatch produced
by the electric field. Since the normal components of the hy-
drodynamic stresses induced by the boundary-driven flow are
also discontinuous at the interface, we must sclve the flow
problem coupled with the electrostatic one simultaneously to
analyze the drop deformation in an electric field.

To formulate the problem for a velocity field generated by
the electnic stress, the fluid motions are assumed to be domi-
nated by viscous and pressure effects, and the inertial terms in
the equations of motion can be neglected entirely so that the
fluid motion can be described by the quasi-steady Stokes equa-
tion plus the continuity equation. In order to write the govern-
ing differential equations and boundary conditions in a nondi-
mensionalized form, we defined the charactenstic velocity u,
and characteristic pressure (or stress) p, as follows

ey 2
u=E L emy
Mg

The choices of the charactenistic variables for the flow field
are based on the fact that the flow is generated due to the
imbalance of the tangential stress associated with the electric
field.

With these conventions and assumptions, the equation of

motion and the continuity equation for the suspending fluid can
be written in a familiar form

V-T%=0, V-u=0. (8)
where,
T=—PI+t,+De[ Ty Tot §1T ]
D { 0o Ty Ty YT O3 Tt Ga( Tty Ty Ty Tny)}
+0(De™,
and 7, are the Rivlin-Ericksen tensors given by

T =(Vuy+(Vuy';

d T
'c(g):§tt(1)+u-V'c(1)+fc(1)-(Vu) +Vu-T;

T
T == Tt U Vgt Ty (V) + Va7,

J

"
The Deborah number De and ¢, are dimensionless parame-

ters, defined as De=e(E"Ym/\l, and ¢, ®,/m, in which @, and

®; denote the dimensional normal stress coefficients, respec-
tively. The Deborah number De 1s effectively the ratio of an
intrinsic relaxation time scale for the fluid to the convective
time scale of the fluid motion. As indicated in (7), De is small
and the second-order {luid model is applicable to the present
case in which non-Newtonian contributions to the fluid motion
are assumed to be small. On the other hand, ¢, is of the order
unity.

Similarly for the fluid inside the drop, we obtain

V-T"=0, V&0, @
where,

T™=—PL+3 + Del Ty, T+ 0, ]

+De [0 Ty ) Ty BTt 0ul Ty T+ By Ty 1+ O(De ),

with T, defined analogously te T, . but using § instead of u.
In this case, De and &)1 are defined using the same quantities
pertaining to the drop phase. The exact relationship between
Deand De in this situation will be considered in the subse-
quent sections; for now, we shall simply assume that they are
of the same order of magnitude.

Let us then consider the boundary conditions for the flow
fields induced by the electric field. For the present case, the
continuity of tangential velocities and the kinematic condition
on the surface of deformed drop are

u-t=u-t, )]
u-n=u-n=0. (10)

In addition, the tangential and nommal stress balances at the
interface are, respectively,

(TE- ST mt (TP AT yimt=0 , (12)

(TE—S"I'E)3ml+(TH—?L'I"H)31m:é(V-n) . (13)

Here A is a zero-shear-rate viscosity ratio whereas S is the
permittivity ratio of drop to continuous phase. In addition, the
superscript E and H stand for the electric stress and hydrody-
namic stress, respectively. The electric capillary number C is a
dimensionless ratio between electric forces and restoring inter-
facial tension and is given by C=ea(E™)’%y. Therefore, De can
be related to C as follows;, De=38C, where d=m,yoqL,. In fact,
De 15 linearly proportional to C.

In general, the problem formulated above is nonlinear, in
spite of the fact that the governing equations are linear The
nonlinearity comes solely from the boundary conditions. An-
other difficulty inherent in this problem arises from the fact that
the nterface location where the boundary conditions are ap-
plied is a priori unknown and must be determined as a part of
the solution. Thus, for arbitrary C, where the deformation may
be quite sigmificant, the problem can only be solved numerni-
cally. In the present work, instead, we restrict our attention to
the case of small deformations from the spherical shape, with
the spheroidal shape being preserved by interfacial tension.

Hence we can employ a purely analytical approach by con-
sidering the asymptotic limit C<<1. As a result, the magnitude
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of deviation from sphericity is expected to be O{C) and ap-
proximate analytic solution can be obtained. The basic idea is
that the drop shape 1s only slightly nonspherical, and the bound-
ary conditions at the drop interface can be linearlized about the
boundary conditions for an exactly spherical drop. This ap-
proach 1s an example of a general technique known as the
method of domain perturbation. In the perturbation expansion
which follows, we trace the general procedures outlined by
Leal [1992], in which the velocity, kinematic and shear stress
conditions are satisfied at each order of perturbation, and the
deformation of the drop is then calculated using the normal
stress balance.

We now proceed formally to the solution of our problem, via
a double asymptotic expansion in C and De. Thus,

1>>C, De>>C% CDe, De* -

We may also write down formal expansions for the velocity,
pressure and stress fields. For the suspending phase, these are

(U) (Le)

+Deu™+Cu®--;

P=P"+ DeP*+ CP--; (14)
T=T"+DeT*“"+CT" .

Here, u® is the velocity of a Newtonian, spherical drop in a
Newtonian fluid under the action of electric field, whereas
u® represents the non-Newtonian contribution to the velocity
of a spherical drop, and so on. We can obtain similar expres-
sions for the fluid inside of the drop,

a4 Den™

+Deu +Cﬁ(m---'

p=p"+ D"+ CP* (15)

T=T' +DeT(DE)+CT(m- .

The drop shape should also be considered in the context of
the expansions for the velocity, pressure and stress fields for
the suspending phase and the fluid inside of the drop. Since the
Newtonian velocity field alone 1s sufficient to cause deforma-
tion of a Newtonian drop at O{C), it is obvious that the O(De)
non-Newtonian velocity field will cause deformation at O{CDe),
and so on. Hence, on the drop surface,

Fg—]—f®—

=1 CEO-CDef P20 .=0 | (16)

where £©, £©™_ and £ denote the deformations at O(C), O
(CDe), and O(C?), respectively. The deviation from sphericity
is contained in the shape function f{8). The outer unit normal
n and the principal radii of curvature V-n are now easily ex-
pressed in terms of the shape functions as

n=VF/|VF=e~CV{”
—CDer‘CD‘”—CZ[Vt*d HVE Vf@)e,}. -, a7

and thus, the mean curvature of the drop surface 1s,
V-n=2-C([ 287+ V£O-CDe[2£7 + VH™))
2D 2O VRO (18)

This completes the formulation of problem for a second-
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order drop subjected to a uniform electric field. In the next
section, the governing equations and boundary conditions for
both the electric fields and the flow fields at each order are
solved by collecting the terms with the same order in C and
De.

SMALL DEFORMATION THEORY

The asymptotic expansion procedure for the deformation of a
Newtonian fluid drop in an electric field is already known, and
thus, it 1s not necessary to repeat the procedure here [Ajayi,
1978; Ha and Yang, 1995]

The velocity fields, which is correct up to O(C), are given by
n terms of stream functions mside and outside the drop, that 1s,

FH=(AT AT QM CIAT B T)Qu(M)

HATT BT Q1 +0(C) (19)
q_,mf(A(u) 5 403 (€ 5 S0 3
= AP -APTIQM+CIAY +BS T)QuM)
+HA T +BIT)QUmI+0(CY) 20)

Here, the set of constants A, B, A,q and ]§n must be deter-
mined from the appropriate boundary conditions. In (18) and
(19), Q,(1), stands for the Gegenbauer polynomials defined by

Q=] P(nydn,

in terms of the Legendre polynomial P m) of order n with
T=cosb.

After obtaining the electrostatic fields, and then, applying
boundary conditions (%), (10}, and (11), the following non-zero
coefficients which specify the stream functions can be found.

O 9R{1-5R)

—_— 21
SR+ 1+A) @D
02 1-R T 1Mooy, o 20 00 500, o
= _6(51+2R+351+7L AT A=Ay R AL
BP= A9 4?F(@A2 ’ BO— A9, 2F(@A(m
A= 46 @A®: RO 4F(C)A§U),
21 3
) 6 22)
B{"= 211: “A; Bic’:—ﬁFgc’A‘g“).

Finally, by applying the normal stress balance at the inter-
face, the comrection for the shape function which is accurate up
to O(C?) is obtained. The result is

FY=CFOP, )+ CIFS +F P )+ Fi Py(m)] (23)

where

3
Y= [(1 +R’-28R*)+R(1-SR)

3(2430)
4(2R+1Y :l

5(1+A) |

1
Fy =3(FY),

@_1 oFy" _ (41 R }@ (002
Fo _4[(2R+1)2(1 +RI-2SR) 512R 77
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—A‘;C)(2+3?L)—%F§@A§”)(—8+137&) }

F(d):i[% 9F(ZC)
b 18L3502R 1Y

2 Lo, m
—=Fy A (88+1130 jl
3502 2 ( )

(1+R2—28R2)+%*(F(2m)2

The constant F is included in (22) to ensure that the drop
volume remains constant through the deformation.

We consider n this subsection the O(De) problem which re-
presents a first viscoelasticity correction to a drop suspended in
a uniform electric field. The electrostatic potentials are also go-
verned by Laplace’s equations subject to the boundary condi-
tions (2)-(5). It can be easily seen from (1) and boundary con-
ditions that the electrostatic potentials outside and inside the
drop are zero in O(De). This is due to the fact that the elec-
trostatic potentials are obvicusly independent of the rheological
properties of the fhuds including the viscoelasticity. Hence, the
O(De) problem is reduced to a purely hydrodynamic one in-
duced by an electric field.

For the suspending phase, the equations of motion at O(De)
plus the continuity equation are

V- T"%¥=0, V.u"™'=0, (24)
m which
TH(DE):fp(De)I+T§1D)E)+Tema,

and

i (0
T =[5 T+ 91Ty -

The corresponding equations for the fluid mnside the drop are,
of course, completely analogous to the expressions (23) for
the outside phase, and can be simply expressed by adding the
tilde mark to the variables. The continuity of the tangential
velocity and the kinematic condition at r=1 are

= (25)
u == 0 (26)

The stress balances can be expressed in terms of the electric
and hydrodynamic stressest at O(De) as shown in O(1) prob-
lem. The balances for the normal and tangential stresses are

~ E(De)

ST AT A (T T, 0T

B[(%E?i %E?i)mq)l T =0, @7
ST P AP, A @ it
B[(Té?; TEI;)W+¢1T =2 2y (28)

The parameter [ which appears in (26) and (27) represents the
ratio of Deborah numbers of the two fluids, 1.e.,

B=(De/De)h=mym; ,

and is thus independent of the zero-shear-rate viscosity ratio A.
Consequently, for moderate values of A, both the fluid motions
inside and outside the drop contribute to the drop deformation
at O(De) if B 1s of O(1). If B approaches zero or infinity, one
of the fluids may be considered Newtonian, and therefore pro-
duces no direct contribution at O(De) to the drop deformation.

In the case of the Newtonian fluid, the momentum equation

for the creeping flows can be reduced to a homogeneous differen-
tial equation for the stream functions as noted from (18) and
(19) of the O(1) problem. However, in the presence of the non-
Newtonian contribution of the extra stress tensor, the stream
functions of O(De) satisfy an inhomogeneous equation of the
form

EYY=Z(1, 6), (29

in which the function Z(r, &) can be easily shown to be
a 2T axira :
7, El):[%(V-T ),—&%[r(V-T )9]}51119,

and a similar expression for the stream function P for the
drop phase can be obtained in terms of the non-Newtonian
extra stress tensor.

The particular solutions of the above equations can be deter-
mined with the aids of the O(1) solutions and the results are

yool A2 (L4, )(A‘”))ZPz(n)%(lSr‘%12r‘5)

(1+0 ) APY Py,

1,00

Ty (30)

The solutions of the homogeneous parts
~ (e)
E=0, BAY, =0 31

have the same forms as those of the Newtonian fluid case
which appear in (18) and (19). The unknown coefficients con-
tained n the O(De) stream function can be determined from
(24, (25), and (26), Wlth the leading order results. The stream
functions P and ¥ can be expressed as (18) and {19

(De)

with the nonzero coefficients AY. B™ A" and B (n—
4, which are given below :

APAP (140 (ALY

B AR+ 90(ARY

By =AY,

APAT2 10T

BE—AP (1 +0)(a8),

B5D9)77A4 )

A= 3001101308118,

mo_ (AP X
=iz i+ 00+40(1+B)-100(0,+BB.] (32)

From the normal stress balance (27), we can determine the
correction for the drop shape induced by non-Newtonian con-
tributions. The result is

F = CDef ™ =CDe[FX ™ Py (m)+FL ™' Pu(n), 1 (33)
where
P I —[?(1—B)+55(¢1—B<T>1)}(A5“))2,

Korean J. Chem. Eng.(Vol. 16, No. 5)
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(CDQ)_74+5}LN(DG) i oy _RE
Fim=—y A a0 B)—52(0:—Bo1)]

02
(AP 21,

LINEAR STABILITY OF THE STEADY-STATE SHAPE

In the preceding sections, we have determined the steady-
state shape function fup to O{C?):

=4 F=CFO 4 CDef P O (34)

The most important feature of the present solution is that it
exhibits multiple steady-state solutions for electric capillary num-
bers below a critical value, but no steady-state solution beyond
the critical value. Kang and Leal [1988] and Yang et al [1993],
and more recently, Ha and Yang [1995] have shown that in the
small deformation limit, the critical electric capillary number
which separates the stable and unstable steady-state solution
branches, can be determined without solving the unsteady dis-
turbance problem. According to their perturbation theory, an
estimation of the critical electric capillary number can be car-
ried out by transforming the C-perturbation into a P,-pertur-
bation, in which the small parameter is the magnitude of the
P,(m) mode of deformation

L= fl fPy(n)dn . (35)

instead of C. Then, the electric capillary number as a function
of € is given by

C:CIQ“F ngz N (36)
in which
5 oS[FO48F™
Cl—FgC)a G 4(Fe(0))3

The expansion in terms of § is equivalent to interchanging the
dependent and independent variables from £ and C, respec-
tively, to C and £, By the transformation, the limit point, which
appears as a singular point on the stable solution branch at a
critical electric capillary number C,, is converted to a regular
point. Thus, we can determine the electric capillary number C
as a function of { for both the unstable and stable branches of

(@ ®)

g

c G
Fig. 2. Representation of stability exchange.
{a) C in terms of {; (b) € in terms of C
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the solution curve, as shown in Fig. 2. The critical electric

capillary number, which occurs when JC/0L=0, can thus be
estimated as

& (12

Cm—t g2 @7
AR SR S[FS 4+ 6FFP

It can be easily shown that the stability of the solution branch
is exchanged at the critical point estimated above.

In a nigorous linear stability analysis, we must consider an
arbitrarily small three-dimensional disturbance to a steady-state
shape and examine whether the drop will retumn to the steady-
state shape or continue to either deform or break up, by solv-
ing the corresponding unsteady problem for the disturbance.
The steady-state drop shape can be always expressed in terms
of spherical surface harmonics. However, for an axisymmetric
case, the spherical surface harmonics can be related to the Le-
gendre polynomials, P,(1). Thus, the present solution for the
steady-state drop shape is given by (22), and (32) in terms of
P(m). The unsteady problem in quasi-steady Stokes flow for
the three-dimensional disturbance of O{C) to the steady shape
can be constructed by considering the kinematic condition

. o,
un=in=Cad, =, (38)

in which g=x/r =(xx)""). The corresponding unsteady prob-
lem was formulated by Barthes-Biesel and Acrivos [1973] For
the three-dimensional disturbances of O(C), f,,=f,,, {,=f,=-1/
2 1., and f, =f; =f,,=f,., due to the axisymmetry of the problem
about the x;-axis. Thus, we have to consider three simulta-
neous unsteady problems for £, £, and [ ;:

C%i: AC, De, B, FEPLFER B RO FONE, (39)

in which the detailed formula for the parameter I, at each
order 1s given in the previous section. The unsteady solutions
will decay and the steady drop shape is stable only if all of the
coefficient functions hs, hy,, and hy; are always negative. It
can be shown straightforwardly that the stability condition is
satisfied only when

F(C'J

C<Cm—"—,
A[FE 1 SFCP

(40)
which 1s identical to the critical electric capillary number for
the stability of P,{m) mode. Consequently, up to the O(C) dis-
turbance to the steady-state shape which is correct to O(CH,
the stability condition can be determined by estimating the
limit point for the existence of the steady state in P,-perturba-
tions.

Although instability may be mamifested by the amplification
of nonaxisymmetric as well as axisymmetric deformations, there
1s a region in which only the axisymmetric instability modes
are observed in a uniform electric field [Saville, 1970]. Thus,
the present study can afford insights nto the phenomena of elec-
trohydrodynamic stability in the region of vahdity. For exam-
ple, experiments reported by Taylor [1969] showed that the
stability and nstability phenomena in an axisymmetric mode
have been observed with field strengths in the range 0-6 kVem™
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while at somewhat higher field strengths instability is mani-
fested in a nonaxisymmetric form. Of course, the result out-
lined above also may not be valid for a large deformation
problem in which there are significant nonlinear interactions.

DISCUSSION

In the previous sections, we obtained the asymptotic solution
correct up to O(C?) for the steady-state shape of a drop sub-
jected to a uniform electric field In addition, we also consid-
ered the linear stability of the drop by transforming the C-
perturbation into the Pp-perturbation. Since the continuous and
dispersed {luids are assumed to be non-Newtoman, specifically,
second-order fluids, it is expected that the drop behaviors would
be different from those of a Newtonian fluid. In this section,
we will discuss the results given by the small deformation
theory and linear stability analysis. The main purpose of this
section 1s to determine whether the elasticity of the continucus
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Fig. 3. Critical electric capillary number C_ as a function of the
zero-shear-rate viscosity ratio.
Filled circles denote C, of a Newtonian drop and continu-
ous phases with the same electrical properties. ----,

B=0.01; , B=1, __, B=10; _._. P=20. (a) S=1, R=
0.1, 8=1, and ¢,=f, =—0.50. (b) S=1, R=100, §=0.1 and
0=, =—0.50.

and drop phases stabilizes or destabilizes the drop. To do so,
among various parameters we will concentrate on the role of [3,
the ratio of the normal stress coefficients of two phases, and the
Deborah number of the continuous phase.

Prior to analysis of the deformation and stability of the drop,
we have to estimate the material parameters ¢, and ¢, of the
two fluids. The second normal stress coefficient is not nearly as
well studied experimentally as the shear viscosity and first nor-
mal stress coefficient. However, the most important point to
note about the second normal stress coeflicient 1s that its mag-
nitude is much smaller than that of the first normal stress co-
efficient. Although there are some disputes on the magnitude of
the second normal stress coeflicient and even on the sign of its
value, it is generally accepted that the magnitude of the se-
cond normal stress coefficient ranges from 1% and 20% of that
of the first normal stress coefficient. Therefore, in general, 1t 1s
believed that ¢, and ¢, should always lie between —0.5 and 0.6,
as verified experimentally by Leal [1975]. It is also known that
although our knowledge about the second normal stress coeffi-
cient is still incomplete, the first normal stress coefficient is
sufficient to provide general behaviors of a non-Newtonian
drop, especially when the fluids are weakly non-Newtonian. In
the present study, we thus fixed both values of ¢, and ¢, as
—0.50 to avoid complexity caused by the nondeterministic pa-
rameter.

The estimated cntical electric capillary number, obtained from
(36) as a function of the zero-shear-rate viscosity ratio A, is re-
presented in Fig. 3(a) and 3(b) for a prolate and for an oblate
spheroid, respectively. Also displayed in these figures is that
the critical electric capillary number influenced by the ratio of
the normal stress differences 3 is compared to that of a Newto-
nian pair in which other parameters, such as the permittivity
ratio S and the resistivity ratio R are the same. It can be noted
that the effect of non-Newtonian elasticity 1s dimimshed as the
viscosity ratio increases. However, when both the phases are non-
Newtonian, elasticity of the drop phase make the drop either
stable or not, depending upon the type of deformation. For
example, as the ratio of the normal stress difference ratio
increases the drop becomes more stable for the prolate-type
deformation, whereas the trend is reversed for the oblate-type
deformation In addition, for the prolate-type deformation, com-
parison with the Newtonian pair shows that a non-Newtonian
fluid drop in a non-Newtonian fluid is slightly less stable when
B 1s less than unity, and becomes more stable when 3 increases
above unity. In the polymer blending technology, it 1s a well-
known rule of thumb that the drop phase elasticity is expected
to reduce the deformation and increase the critical shear rate
for the drop breakup, while the matrix elasticity should in-
crease the deformation and decrease the critical shear rates [El-
mendorp and Maalcke, 1985].

These somewhat complicated results can be understood by
simply considering Fi™ which is the largest, first contribution
from the non-Newtonian property and appears in {32). For a
moment, let us restrict our attention to the stability of a prolate
spheroid. When FY™is positive, the drop deforms into a pro-
late spheroid at O(CDe) causing the critical electric capillary
number C, to decrease. Since we have fixed the value of ¢, and
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0, in the present analysis, the sign of F*'is determined by the
viscosity ratio and [3. However, the sign is independent of the
electrical properties of the fluids. The velocity field, and conse-
quently the deformation of the drop are considerably nflu-
enced by the electrical properties at O(1). However, at O(CDe),
the behavior of drop is determined solely by the non-Newto-
nian rheological properties of the fluids. In Fig. 4, the effect of
A and B on the sign of FY™ is reproduced. From this figure, it
can be seen why the drop is stabilized as [} increases and less
stable when [ is smaller than unity. It can be also noticed from
this figure that the non-Newtonian contribution 1s vamshed,
and thus, no deformation occurs at O(CDe) for a certain com-
bination of B and . In this special case, the drop behaves like a
Newtonian drop although the drop possesses non-Newtoman
properties, i.e., non-zero normal stress difference. This stability

4

K
L8]
T

F,09 /1 (AL9)?
o
o
I

PFECEREIT L PITT R R RTTT |
10 102

107 100 10° 102
A
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diagram is depicted m Fig. 5, m which the contours of F
0 are plotted for various combinations of ¢, and ¢,. Above a
given contour line, FY™ <0 the non-Newtonian contribution
makes the drop stable. On the other hand, below the contour
line, the viscoelasticity acts in the opposite way and the drop
becomes less stable.

The Deborah number De of a continuous phase is also an
important parameter for the stability of a non-Newtonian drop.
As discussed previously, De is lnearly proportional to the elec-
tric capillary number and the proportionality constant § is de-
termined by the rheological properties of the flud. As 8 (or
equivalently, De) increases, the drop becomes more stable in
the prolate-type deformation, which is illustrated in Fig. 6. The
stability of an oblate spheroid can be explained by a similar
consideration of F§™ in terms of [ and De.

Finally, the effect of the resistivity ratio R on the stability of
a drop 1s shown in Fig. 7 in which both the viscosity and per-
mittivity ratios are fixed at 0.001 and at unity, respectively. Due
to the fact that the permittivity ratio S is unity, the drop remains
always stable if the resistivity ratio R 1s umty. The effect of
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Fig. 6. Effect of Deborah number on C.
(@) 8=1, R=0.1, =1 and $;=9,=-0.50, (b) S=1, R=100,
=1 and $=0,=—0350: ---- &=01;, —, 6=1,__, &
10.
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Fig. 7. Estimation of C, in terms of the resistivity ratio R.
S=1, %=0001, 8=0.1 and ¢,=0,=—0.50. ----, }=001; —,
B=1; ——, B=10, ——, B=20.

elasticity 1s more appreciable for an oblate spheroid compared
to the case of a prolate spheroid for which the influence of el-
asticity 1s small. According to the results of hinear stability an-
alysis carried out in the present study, C, is very weak function
of R provided that the resistivities of two phases are quite
different.

CONCLUSIONS

In the present study, we investigated one of the general prob-
lems concerned with liquid-liquid dispersion; more specifical-
ly, we studied the effect of non-Newtonian properties on the de-
formation and breakup of a droplet in a uniform electric field
from theoretical point of view. In order to obtain an analytic solu-
tion for the drop shape, the fluids were simply assumed as se-
cond-order fluids. The mherent nonlinearity of the free bound-
ary problem was removed by the method of domain perturba-
tion and a double asymptotic expansion in terms of C and De.
The stability of the steady-state drop shape was studied by trans-
forming the C-perturbation into a P,-pertubation, and thus, the
critical electric capillary number, which separates the stable and
unstable steady-state solution branches could be determined.

The theoretical approach suggested that the non-Newtonian
contributions made the drop either more stable or unstable. As
the normal stress coefficient of the drop phase increased, the
stability of the drop was enhanced for a prolate spheroid. How-
ever, for an oblate drop, the drop stability was detenorated sig-
nificantly as the normal stress difference coefficient of the drop
phase increased. Non-Newtonian contributions to the drop defor-
mation became small as the viscosity ratio increased. The small
deformation theory showed that only rheological properties of
the fluds were involved in determining the type (i.e., prolate or
oblate) of deformations at O(CDe).
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