
KoreanJ. Chem. Eng., 16(5), 585-594 (1999) 
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Abstract-The effects of elastic property on file deformation and breakup of an uncharged drop in a uniform 
electric field are investigated theoretically using tile second-order fluid model as a constitutive equation. Two 
dimensionless numbers, the electric capillary number (C) and the Deborah number (De), the dimensionless param- 
meters governing the problem. The asymptotic analytic solution of the nonlinear flee boundary problem is deter- 
mined by utilizing tile method of domain perturbation in file limit of small mathcal C and small De. The ets- 
ymptofic solution provides tile limiting point of C above wlfich no steady-state drop shape exists. The linear sta- 
bility theory shows that the elastic property of fluids give either stabiliNng or destabilizing effect on the drop, 
depending on the defornlation mode. 
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INTRODUCTION 

Recently, the dispersion of two immiscible phases has been 
the subject of intense investigation from both an experimental 
and a theoretical point of view. Common industrial processes 
involve dispersion of one fluid phase into another, either to 
form an emulsion, or to increase the interracial area between 
the two phases for more efficient heat and mass transfer. In this 
paper, we are concerned with one aspect of this general prob- 
lem; namely, deformation of the interface and linear stability of 
a single droplet immersed in a continuous phase under the 
action of a uniform electric field at small Reynolds numbers. 

When an uncharged drop is suspended in a dielectric liquid 
in an external electric field, there is a discontinuity in the stress 
field at the drop interface. Thus, the interface is deformed from 
its initial spherical shape due to the mismatch of the normal 
component of the electric stress [Garton and Krasucki 1964; 
Taylor 1964; Basaran and Scriven 1989]. In addition, if the 
conductivities of both phases cannot be neglected, that is, when 
the two phases are leaky dielectric materials, free charges ap- 
pear at the drop interface. The action of an electric field on 
these charges sets the fluids in motion and forming toroidal 
circulation patterns inside and outside the droplet, which is 
otherwise quiescent. However, the charge on the two hemi- 
spheres of a drop in a uniform electric field is antisymmetric in 
such a way that the net surface charge is zero [Taylor 1966; 
Melcher and Taylor 1971; Torza et al., 1971; Al-p et al., 1980; 
Miksis, 1981; Vizika and Saville, 1992; Ha and Yang, 1995; 
Saville, 1997; Ha and Yang, 1998; Ha and Yang, 1999a, b]. 

One of the potential technological applications where these 
effects are prevalent is the processing of a two-phase polymer 
blend. In this case, the morphology of the dispersed phase, 
which determines generally the mechanical and other physical 
properties of the polymer blend, is a crucial factor. A number 
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of studies have considered the underlying physics and process- 
ing of polymer blend to elucidate the relationship between mor- 
phology and properties of the blend, and at the same time to 
obtain the desired morphology by applying an external field. 
Electric field, among other external fields which are used in 
order to evolve the morphology of the polymer blend, has a 
few unique advantages including easy manipulation of the field 
direction and intensity. The dispersed phase of the polymer 
blend can be easily aligned and stretched to the desired direc- 
tion by applying the electric field externally. 

During the past decade, a few studies concerning the mor- 
phology evolution in an immiscible two-phase polymer blend 
by an external electric field have been reported [see, for exam- 
ple, Moriya et al., 1986; Venugopal and Krause 1992; Xi and 
Krause 1998]. However, most of these studies utilized theory 
developed for Newtonian fluids in order to predict the drop de- 
formation. In spite of the non-Newtonian nature of the polymer 
solutions used, the experimental results did not deviate largely 
from the predicted theory in the limit of small deformation. 
However, it has not been confirmed that the stability is not 
influenced by the viscoelasticity. Unlike the Newtonian fluids, 
there have been relatively few theoretical investigations rele- 
vant to the electrohydrodynamic deformation and stability of 
non-Newtonian fluids. This is most likely a result of the antici- 
pated uncertainties in selecting of an appropriate constitutive 
model for non-Newtonian fluids, as well as the obvious diffi- 
culty in solving the equations of motion after the choice has 
been made. In our opinion, however, it is sufficient to consider 
the influence of small instantaneous departures from Newto- 
nian fluid behavior acting over a large time for this type of 
problem, at least, from a qualitative point of view. 

It is worthwhile to note that the appropriate constitutive model 
for non-Newtonian fluids which exhibit a slight departure from 
Newtonian behavior is well-known to be the Rivlin-Ericksen 
fluid, provided that the motion of fluids are both weak and 
slow in a rheological sense. This model may be obtained, via 
the socalled 'retarded-motion' e?cpansion, from almost all of  the 
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currently popular nonlinear constitutive models [Bird et al., 
1987]. Successive terms in the expansion systematically ac- 
count for the deviation from Newtonianbehavior associated 
with elastic effects. A great deal of phy-sical insight about 
elasnc effects can be gained by solving flow problems using 
ordered-fluid models, even though the ordered-fluids accu- 
rately describe neither the dependence of viscosity on the shear 
rate nor the full range of the time-dependent behavior. Further- 
more, the second-order fluid can be prepared experimentally by 
conventional 'Boger' fluid formation technique [Mackay and 
Boger, 1987; Tam and Tiu, 1989]. 

In the present study, we consider theoretically the related 
problem of the deformation and linear stability of a neutrally 
buoyant drop in a uniform electric field in otherwise quiescent 
fluid. The suspending fluid and the fluid inside the drop are 
assumed to be adequately modeled as second-order fluids. Like 
most problems, it is impossible to find exact analytical solu- 
tions for the deformation and stability of a drop; thus, we turn 
to a perturbation technique that can be used to develop solu- 
tions to flow problems for the retarded-motion expansion at 
small Deborah numbers. It is notewo~hy that since the re- 
tarded-motion expansion is itself restricted to a small Deborah 
number, no significant additional limitations are imposed by 
the use of the perturbation procedure. However, even when the 
retarded-motion expansion is used correctly, it is important to 
note that retaining more terms than the second-order terms in 
the perturbation solutions often results in series with 'diminish- 
ing return'. This clearly indicates that while retention of sec- 
ond-order terms gives both a qualitative and a quantitative de- 
scription of the deviations from Newtonian behavior, the inclu- 
sion of third- and higher-order terms provides only minor inl- 
provements to the solution. As a matter of fact, the second- 
order terms can be determined usually with a moderate analyti- 
cal eRbrt, but higher-order terms require increasingly tedious 
and lengthy algebraic developments. Due to these restrictions, 
the retarded motion expansion is used just through second- 
order terms for the present analytical investigations on the 
deviation from Newtonian behavior. The primary thrust of our 
research is a systematic assessment of the coexisting role of 
electric field and the elasticity on the drop deformation and 
stability. 

THE P R O B L E M  STATEMENT 

We begin by considering the steady deformation and linear 
stability of a neutrally buoyant drop suspended in an infinite 
mlmiscible fluid under a uniform electric field of strength E ~. 
The two fluids are assumed to be both incompressible and 
Rivlin-Ericksen fluids, with zero shear viscosities ~ for the 
suspending phase and ~0 for the fluid inside the drop. Further- 
more, a fluid drop is assumed to be a sphere of radius c~ in the 
absence of the electric field. The electrical resistivity of the 
drop phase is denoted as )~, and the permittivity as ~. Corres- 
ponding properties of the ambient fluid are )~ and a, respec- 
tively, while the inteffacial tension between the &op and the 
continuous phase is ~'. As referred to previously, Z and )~ are 
not infinite even if they may be very large under the leaky 
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Fig. 1. Spherical co-ordinate system (r, 0, p) of the dl~ap in a 
uniform electric field. 

dielectric-fluid assumption. In addition, we adopt a co-ordinate 
reference system with a fixed origin O at the centre of the drop 
as illustrated in Fig. 1. In the absence of an electric field, the 
fluids are quiescent and the drop remains spherical owing to 
interfacial tension. 

The model selected to represent the electric-field part of the 
problem is deduced from Maxwell's equation by ignoring mag- 
netic effects which are assumed to be insignificant in this study. 
A further smlplification is that the relaxation time for free charges 
in liquids is short. By ignoring the rates of accumulation and 
convection of charges and by considering isotropic fluids where- 
in linear relations prevail between the appropriate vector quan- 
tities (e.g. current and electric field), the electric fields can be 
calculated from a steady-state model of electrostatic phenom- 
ena. In this case, the governing equations for the electrostatic 
potentials V and V inside and outside the drop are the quasi- 
steady Laplace's equations: 

Wv-o, v~-o. (1) 
In addition, the appropriate boundary conditions are as follows: 

V ~ r  cos0 as r ~ ,  (2) 

V is bomlded at r :  0, (3) 

E. t :E . t  at r : l + f ,  (4) 

-1E.n=ll~.n at r = l + f .  (5) 
Z % 

Here, (2) and (3) describe a uniform electrostatic potential far 
from the drop and a finite potential at the drop centre, respec- 
tively. In the above formulation, the drop interface is defined 
by r l+f  in which f is the unknown shape function and de- 
notes the departure from sphericity. The continuity of tangen- 
tial component of the electric fields at the interface and of the 
conduction current normal to the interface are expressed in (4) 
and (5). In the latter two equations, E and E denote the elec- 
tric fields developed in both fluid phases and can be related to 
the electrostatic potentials as E=--VV and I~=-V~'. It should be 
noted that the above equations are nondmlensionalized with 
respect to the characteristic variables such as 

l~-a, V~-E~a, E~-E ~ . (6) 
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Since the electric field is not uniform due to the presence of a 
fluid drop, electric traction is exerted on the interface. The 
electric traction can be expressed in terms of the electric stress 
tensor, which is the so-called Maxwell's stress tensor, defined 
as 

�9 0 
In the above definition, the stress is nondimensionalized by 
the characteristic value e(F~) 2. The role of the electric stress in 
the drop deformation can be seen conveniently by decompos- 
ing the electric traction into normal and tangential components 
to the interface. Due to the normal stress imbalance, the drop 
cannot remain spherical and must be deformed in order to 
eliminate this imbalance. Further, the discontinuity of the tan- 
gential stresses is responsible for the boundary-driven flow 
which cancels exactly the tangential stress mismatch produced 
by the electric field. Since the normal components of the hy- 
drodynamic stresses induced by the boundary-driven flow are 
also discontinuous at the interface, we must solve the flow 
problem coupled with the electrostatic one simultaneously to 
analyze the drop deformation in an electric field. 

To formulate the problem for a velocity field generated by 
the electric stress, the fluid motions are assumed to be domi- 
nated by viscous and pressure effects, and the inertial terms in 
the equations of motion can be neglected entirely so that the 
fluid motion can be described by the quasi-steady Stokes equa- 
tion plus the continuity equation. In order to write the govern- 
ing differential equations and boundary conditions in a nondi- 
mensionalized form, we defined the characteristic velocity u~ 
and characteristic pressure (or stress) p~ as follows 

u-ea(E~) 2, p =e(F~) 2 " 
g0 

The choices of the characteristic variables for the flow field 
are based on the fact that the flow is generated due to the 
imbalance of the tangential stress associated with the electric 
field. 

With these conventions and assumptions, the equation of 
motion and the continuity equation for the suspending fluid can 
be written in a familiar form 

V.T~-0, V.u-O. (8) 

where, 

T~--PI+'cl~+De[%<%~+r 

+De2 { 02(z<n :'c<n)z<l)+0~z<~)+04 (z<l) �9 z<2)+z<2)z<l))} 

+O(De3), 

and %) are the Rivlin-Ericksen tensors given by 

%)=(Vu)+(Vu)~;O ~ l 
z<~)=~<u+ u. V%)+%). (Vu) +Vu.%); 

3 r z<~)=~c<~)+ u. Vz<~)+z<~). (Vu) +Vu.z<> 

The Deborah number De and @~ are dimensionless parame- 
ters, defined as De=e(E~176 and (~ o%/c%, in which 0% and 

denote the dimensional normal stress coefficients, respec- 
tively. The Deborah number De is effectively the ratio of an 
intrinsic relaxation time scale for the fluid to the convective 
time scale of the fluid motion. As indicated in (7), De is small 
and the second-order fluid model is applicable to the present 
case in which non-Newtonian contributions to the fluid motion 
are assumed to be small. On the other hand, (bl is of the order 
unity. 

Similarly for the fluid inside the drop, we obtain 

v.~-o, v.a-o, (9) 
where, 

with "~/~,) defined analogously to "G), but using fi instead of u. 
In this case, De and ~z are defined using the same quantities 
pertaining to the drop phase. The exact relationship between 
De and De in this situation will be considered in the subse- 
quent sections; for now, we shall simply assume that they are 
of the same order of magnitude. 

Let us then consider the boundary conditions for the flow 
fields induced by the electric field. For the present case, the 
continuity of tangential velocities and the kinematic condition 
on the surface of deformed drop are 

u.t-f~.t, (10) 
u.n-~.n-0. (11) 

In addition, the tangential and normal stress balances at the 
interface are, respectively, 

(T E SiE):nt+(T ~ ,<i'H):nt-0, (12) 

(t~-si ~) :,m+(t~-)~T ~) :,m:~(v..). (13) 
Here g is a zero-shear-rate viscosity ratio whereas S is the 
permittivity ratio of drop to continuous phase. In addition, the 
superscript E and H stand for the electric stress and hydro@- 
namic stress, respectively. The electric capillary number C is a 
dimensionless ratio between electric forces and restoring inter- 
facial tension and is given by C=ea(E~/~. Therefore, De can 
be related to C as follows; De=SO, where ~c%?/o~t0. In fact, 
De is linearly proportional to C. 

In general, the problem formulated above is nonlinear, in 
spite of the fact that the governing equations are linear. The 
nonlinearity comes solely from the boundary conditions. An- 
other difficulty inherent in this problem arises from the fact that 
the interface location where the boundary conditions are ap- 
plied is a priori unknown and must be determined as a part of 
the solution. Thus, for arbitrary C, where the deformation may 
be quite significant, the problem can only be solved numeri- 
cally. In the present work, instead, we restrict our attention to 
the case of small deformations from the spherical shape, with 
the spheroidal shape being preserved by interracial tension. 

Hence we can employ a purely analytical approach by con- 
sidermg the asymptotic limit C<<I. As a result, the magnitude 
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of deviation from sphericity is expected to be O(C) and ap- 
proximate analytic solution can be obtained. The basic idea is 
that the drop shape is only slightly nonsphericak and the bound- 
ary conditions at the drop interface can be linearlized about the 
boundary conditions for an exactly spherical drop. This ap- 
proach is an example of a general technique known as the 
method of domain perturbation. In the perturbation expansion 
which follows, we trace the general procedures outlined by 
Leal [1992], in which the velocity, kinematic and shear stress 
conditions are satisfied at each order of perturbation, and the 
deformation of the drop is then calculated using the normal 
stress balance. 

We now proceed formally to the solution of our problem, via 
a double asymptotic expansion in C and De. Thus, 

I>>C, De>>C, CDe, De 2... . 

We may also write down formal expansions for the velocity, 
pressure and stress fields. For the suspending phase, these are 

u=u<~ Deu<~)+ Cu<< ) 
p=p<O)+ DeP<~)+ Cp<co .... (14) 

T=T<~ CT<co.... 

Here, u (~ is the velocity of a Newtonian, spherical drop in a 
Newtonian fluid under the action of electric field, whereas 
u (~ represents the non-Newtonian contribution to the velocity 
of a spherical drop, and so on. We can obtain similar expres- 
sions for the fluid inside of the drop, 

F=F<~ D&<~'+ CF <~ .... (15) 

~:i<~ 

The drop shape should also be considered in the context of 
the expansions for the velocity, pressure and stress fields for 
the suspending phase and the fluid inside of the drop. Since the 
Newtonian velocity field alone is sufficient to cause deforma- 
tion of a Newtonian drop at O(C), it is obvious that the O(De) 
non-Newtonian velocity field will cause deformation at O(C-T)e), 
and so on. Hence, on the drop surface, 

F-I= 1 -Ue-f  v~e 
- r l  ClZC~ CDef<e>)C~ f <c") . . . .  0, (16) 

where f(c~, f(c~, and fc,)denote the deformations at O(C), O 
(CDe), and O(Ca), respectively. The deviation from sphericity 
is contained in the shape function f(0). The outer unit normal 
n and the principal radii of curvature V.n are now easily ex- 
pressed in terms of the shape functions as 

n-VF/lVFI- ee-CVfco 

-CDeVt~C'~)- C~[Vf<C~)+ ~(Vf<co. Vt~C'))e~ l . . . .  (17) 

and thus, the mean curvature of the drop surface is, 

V. n-2-C([2 f<co + V~I~c)]-CDe [2 l~c>)+V~f<e~)]) 

c~[2t ~< 2t%~% V~t ~)1 . . . . .  (18) 

This completes the formulation of problem for a second- 

order drop subjected to a uniform electric field. In the next 
section, the governing equations and boundary conditions for 
both the electric fields and the flow fields at each order are 
solved by collecting the terms with the same order in C and 
De. 

SMALL DEFORMATION THEORY 

The asymptotic expansion procedure for the deformation of a 
Newtonian fluid drop in an electric field is akeady known, and 
thus, it is not necessary to repeat the procedure here [Ajayi, 
1978; Ha and Yang, 1995]. 

The velocity fields, which is correct up to O(C), are given by 
in terms of stream functions inside and outside the drop, that is, 

Wr176176 2)Q2(n)+c[(a~c~+B~C')r 2)Q2(n ) 

+(A~C/r-~+ B~er-4) Q4 (rl)] +O (C~), (19) 
~q �9 (o) 5 (o) ? ~(c0 5 ~(c0 3 =(A2 r A2 r )Q2(rl)+C[A~ r +B~ r )Q2(~) 

+(~dC)r:+g~cor ~)Q4(~)]+o(c~), (20) 

Here, the set of constants An, B~, fi~, and t~, must be deter- 
mined from the appropriate boundary conditions. In (18) and 
(19), Q~(T1), stands for the Gegenbauer polynomials defined by 

in terms of the Legendre polynomial P~(TI) of order n with 
rl=cosO. 

After obtaining the electrostatic fields, and then, applying 
boundary conditions (9), (10), and (11), the following non-zero 
coefficients which specify the stream functions can be found. 

A~c)_ - 9R(1 SR) (21) 
5(2R+ 1)2( 1 +)v) 

A(co ~(2 1-R 1 1-s <o/ ~(co ~(co 5~(coA<o/. 

B(C,) ~<< 46~(co,~<0). 1~<< A<e+3F(coA(0) f 
2 = n 2  ~-T~2 n 2  , 2 = 2 ~ 2 2 - 

A (co_46~(c)A (o). 7,(< 4F(co A (o). 
�9 x4 = 3 1 2  �9 ~2 , 

B<e/ _a2e<ea<0). r 64~<coA<0) j~ (22) 

Finally, by applying the normal stress balance at the inter- 
face, the correction for the shape function which is accurate up 
to O(C a) is obtained. The result is 

(cO 2 (c a ) (c a ) (c a ) 
f< = C F 2  P 2 ( q ) + C  [Fo +F2  P 2 ( q ) + F 4  P 4 ( n ) ]  (23) 

where 

3 2 ~ 3(2+3~.) 
(I+R 2SR)+R(1 SR) 

F~c):a(2R+I ) [ 5(-7i~+k) ] 

F<C ~) l/~(co~2 
O =~t ,*2 ) , 

F(C ~) 1~ 9F~CO (l+N~ 2SN~(_41 R 2~_20 (c) 2 
o =4L(2R+l) > "k51+2R ~ ) ' T  (F2) 
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-A~C')(2+ 3X)-}F~C~A~~ + 13~) 

F<:)_ i F2d 9F c') , 1 •  2 ~e~2~+ 36 le(c)~ 2 
0 T~L~(2- - -~ -~T)~ ,  . . . .  - . . . .  ~ T < ~  

2F~csa~~ 113)v) 

The constant F~  ~ is included in (22) to ensure that the drop 
volume remains constant through the deformation. 

We consider in this subsection the O(De) problem which re- 
presents a first viscoelasticity correction to a drop suspended in 
a uniform electric field. The electrostatic potentials are also go- 
vetoed by Laplace's equations subject to the boundary condi- 
tions (2)-(5). It can be easily seen from (1) and boundary con- 
ditions that the electrostatic potentials outside and inside the 
drop are zero in O(De). This is due to the fact that the elec- 
trostatic potentials are obviously independent of the theological 
properties of the fluids including the viscoelasticity. Hence, the 
O(De) problem is reduced to a purely hydrodynamic one in- 
duced by an electric field. 

For the suspending phase, the equations of motion at O(De) 
plus the continuity equation are 

V. T~<~)-0, V. u<~)-0, (24) 

in which 

TZ:(se) D(De)lf (De) Tex~'a 

and 

t . . . . .  [<~176176162 

The corresponding equations for the fluid inside the drop are, 
of course, completely analogous to the expressions (23) for 
the outside phase, and can be simply expressed by adding the 
tilde mark to the variables. The continuity of the tangential 
velocity and the kinematic condition at r=l are 

ug '=<  ~~ , (25) 

u ~ ' - g  ~~ 0. (26) 

The stress balances can be expressed in terms of the electric 
and hydrodynamic stressest at O(De) as shown in O(1) prob- 
lem. The balances for the normal and tangential stresses are 

TZ(S,e) c,~,.~(.,Se).~(De) '17"7 -(~) . : # ( ' ~ )  #(Oh . *  ~(0) 
r0 ~lrO SU(l),r0 ~u~(1),r#StU(l) "U(l))r~-WlU(2),r~ 

--[3[(~((01) ) �9 ~((01)))p,~--~l~((~)), r#]--O, ( 2 7 )  

TZ(S,e) ,~Z(S,e) r:.(.~) ,.~,(.~) (~)  ,.~r.-.y.(~) :~(0) ~(0).,...... ~<0) 
rr O i r r  r +#~.r +~'(1), rr J~(1), rr " I,U(l) "U(l))r:T"k'lU(2), rr 

--[3[ ( ~{01))" ~{01)))rr--~Jl ~((~)), rr ] -- 2f~De)--V2--~De). (28) 

The parameter [3 which appears in (26) and (27) represents the 
ratio of Deborah numbers of the two fluids, i.e., 

[3 (I)eA)e)Z-&/m~, 

and is thus independent of the zero-shear-rate viscosity ratio X. 
Consequently, for moderate values of s both the fluid motions 
inside and outside the drop contribute to the drop deformation 
at O(De) if [3 is of O(1). If [3 approaches zero or infinity, one 
of the fluids may be considered Newtonian, and therefore pro- 
duces no direct contribution at O(De) to the drop deformation. 

In the case of the Newtonian fluid, the momentum equation 
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for the creeping flows can be reduced to a homogeneous differen- 
tial equation for the stream functions as noted from (18) and 
(19) of the O(1) problem. However, in the presence of the non- 
Newtonian contribution of the extra stress tensor, the stream 
functions of O(De) satisfy an inhomogeneous equation of the 
form 

E4tt'~)=Z (r, O), (29) 

in which the function Z(r, 0) can be easily shown to be 

Z ( r ,  O ) : [ ~ ( V "  T~176 

and a similar expression for the stream function @~~ the 
drop phase can be obtained in terms of the non-Newtonian 
extra stress tensor. 

The particular solutions of the above equations can be deter- 
mined with the aids of the O(1) solutions and the results are 

(D~) l s s (0) 2 l ~p =~( 4r +2r )(1+~)1)(A2 ) m2(q)+~(18r-3+121 : )  

(I+~,)(A~~ ~p~(rl), 
~ (~) 
~-~ : o .  (30) 

The solutions of the homogeneous parts 

E4%D~)=0, E@[~ (3]) 

have the same forms as those of the Newtoman fluid case 
which appear in (18) and (19). The unknown coefficients con- 
mined in the O(De) stream function can be determined from 
(24), (25), and (26), with the leading order results. The stream 
functions ~/vo)and ~<~)can be expressed as (18) and (19) 
with the nonzero coefficients A, ' . . . .  and B, (n=2. 
4), which are given below �9 

2 TM 2 +7-,(l+0i)(a~~ 2 , 
/ 

~(De)_ ~(De) 
2 ~2 , 

A(~/ ~,(z>/ 3 :1 ,a  X:A(%2 
2 :x~4 --~kiWylJk~L2 ) , 

J 

(De) ~ (z< 27 
B4 =-i4 -7(1+O,)(i~~ 2, 

it )- (i?)~ [39(i+~,)+3013(i+%)] 
35( 1 +)v) 

_~<~ (A~~ '~:1+r (32) 4 63(l+)v)t~ 

From the normal stress balance (27), we can determine the 
correction for the drop shape induced by non-Newtonian con- 
tributions. The result is 

6rA0 cse) (cz~) (cz~) F =Cme~ =CDe[F2 P2(q)+F4 P4(q),] (33) 

where 

2+3s 1 ]-73q m + 5 y  . ra,?, ~]~A(% ~ 
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4+5L ~ <ooi 2 .A;, +~-~[22(1 13) 52(< 13r 

0 2 ~A (~ 
(A~)) + ~ ( 1 + r  

LINEAR STABILITY OF THE STEADY-STATE SHAPE 

In the preceding sections, we have determined the steady- 
state shape function fup to O(C2): 

f - { ~+  f<~~ CD ef<CD%C2f <~. (34) 

The most important feature of the present solution is that it 
exhibits multiple steady-state solutions for electric capillary num- 
bers below a critical value, but no steady-state solution beyond 
the critical value�9 Kang and Leal [1988] and Yang et al. [1993], 
and more recently, Ha and Yang [1995] have shown that in the 
small deformation limit, the critical electric capillary number 
which separates the stable and unstable steady-state solution 
branches, can be determined without solving the unsteady dis- 
turbance problem�9 According to their perturbation theory, an 
estimation of the critical electric capillary number can be car- 
fled out by transforming the C-per~rbation into a P2-per~r- 
bation, in which the small parameter is the magnitude of the 
P~rl) mode of deformation 

~--- ~ fP~(n) dn, (35) 

instead of C. Then, the electric capillary number as a function 
of ~ is given by 

(36) C=o,~+<~ ~ , 

in which 

5 
e l = ~ ,  e2 =- 

2<r•(Ch ~12(CDe) 1 
JL~2 q-w~2 J 

4(Fe(e/) 3 

The expansion in terms of ~ is equivalent to interchanging the 
dependent and independent variables from ~ and C, respec- 
tively, to C and 4. By the transformation, the limit point, which 
appears as a singular point on the stable solution branch at a 
critical electric capillary number Q, is converted to a regular 
point. Thus, we can determine the electric capillary number C 
as a ffmction of ~ for both the unstable and stable branches of 

(a) 
. 

"" , ,  

~ ~  ............... 
O, 

C 

(b) 
C 

......... "..._._.__ 
Fig. 2. Representation of stability exchange. 

(a) C in terms of ~; (b) ~ in terms of C 

the solution curve, as shown in Fig. 2. The critical electric 
capillary number, which occurs when OC/O~=0, can thus be 
estimated as 

F~ C~ (F~C'/) 2 
C~=Ar~<d)• -~-2 J at ~-5[F~d)+6F~CD,) ] . (37) 

It can be easily shown that the stability of the solution branch 
is exchanged at the critical point estimated above�9 

In a rigorous linear stability analysis, we must consider an 
arbitrarily small three-dimensional disturbance to a steady-state 
shape and examine whether the drop will re~rn to the steady- 
state shape or continue to either deform or break up, by solv- 
ing the corresponding unsteady problem for the disturbance. 
The steady-state drop shape can be always expressed in terms 
of spherical surface harmonics. However, for an axisymmetric 
case, the spherical surface harmonics can be related to the Le- 
gendre polynomials, P~(~). Thus, the present solution for the 
steady-state drop shape is given by (22), and (32) in terms of 
P,(~). The unsteady problem in quasi-steady Stokes flow for 
the three-dimensional disturbance of O(C) to the steady shape 
can be constructed by considering the kinematic condition 

u,n,:~,,~,:cq~%~, (38) 

in which q,=x]r (r=-(x,x~)'a). The corresponding unsteady prob- 
lem was formulated by Barthes-Biesel and Acrivos [1973]�9 For 
the three-dimensional disturbances of O(C), f~2=f~:, f,=f~2=-l/ 
2 f3> and f~3=f3~=f32=f23, due to the axisymmetry of the problem 
about the x3-axis. Thus, we have to consider three simulta- 
neous unsteady problems for f;3, f~> and f:4 

C~=h,~(C De, F~ c), ~<c~l F(o~I F~), F~C%, F~C%)f,~, (39) 
~ t  ' *2 , *4 , 

in which the detailed formula for the parameter F~ at each 
order is given in the previous section�9 The unsteady solutions 
will decay and the steady drop shape is stable only if all of the 
coefficient ffmctions h~3, h:2, and h:3 are always negative�9 It 
can be shown straightforwardly that the stability condition is 
satisfied only when 

C < C~= 4 [F~C6+ &F~C,c~)], (40) 

which is identical to the critical electric capillary number for 
the stability of Pa(rl) mode. Consequently, up to the O(C) dis- 
turbance to the steady-state shape which is correct to O(C2), 
the stability condition can be determined by estimating the 
limit point for the existence of the steady state in Pa-perturba- 
t i o n s .  

Although instability may be manifested by the amplification 
of nonaxisymmetric as well as axisymmetric deformations, there 
is a region in which only the axisymmetric instability modes 
are observed in a uniform electric field [Saville, 1970]�9 Thus, 
the present study can afford insights into the phenomena of elec- 
trohydrodynamic stability in the region of validity. For exam- 
ple, experiments reported by Taylor [1969] showed that the 
stability and instability phenomena in an axisymmetric mode 
have been observed with field strengths in the range 0-6 kVcm -* 
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while at somewhat higher field strengths instability is mani- 
fested in a nonaxisymmetric form. Of course, the result out- 
lined above also may not be valid for a large deformation 
problem in which there are significant nonlinear interactions. 

D I S C U S S I O N  

In the previous sections, we obtained the asymptotic solution 
correct up to O(C 2) for the steady-state shape of a drop sub- 
jected to a uniform electric field. In addition, we also consid- 
ered the linear stability of the drop by transforming the C- 
perturbation into the P2-permrbation. Since the continuous and 
dispersed fluids are assumed to be non-Newtonlan, specifically, 
second-order fluids, it is expected that the drop behaviors would 
be different from those of a Newtonian fluid. In this section, 
we will discuss the results given by the small deformation 
theory and linear stability analysis. The main purpose of this 
section is to determine whether the elasticity of the continuous 

(a) .40 

(b) 

.36 
%. 
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.32 \ 

\ 

.28 "", \ 
N \  
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Fig. 3. Critical electric capillary number Cc as a function of  the 
zero-shear-rate viscosity ratio. 
Filled circles denote Cc of a Newtouian drop and continu- 
ous phases with the same electrical properties. - - - - ,  
13=0.01; , 13-1, _._, 13-10; . . . .  , 13-20. (a) S-l,  R-  
0.1, 6-1, and <~1-~1- 0.50. (b) S-l ,  R-100, 6-0.1 and 
0~-~, - -0 .50 .  

and drop phases stabilizes or destabilizes the drop. To do so, 
among various parameters we will concentrate on the role of [3, 
the ratio of the normal stress coefficients of two phases, and the 
Deborah number of the continuous phase. 

Prior to analysis of the deformation and stability of the drop, 
we have to estimate the material parameters 01 and ~1 of the 
two fluids. The second normal stress coefficient is not nearly as 
well studied experimentally as the shear viscosity and first nor- 
mal stress coefficient. However, the most important point to 
note about the second normal stress coefficient is that its mag- 
nitude is much smaller than that of the first normal stress co- 
efficient. Although there are some disputes on the magnitude of 
the second normal stress coefficient and even on the sign of its 
value, it is generally accepted that the magnitude of the se- 
cond normal stress coefficient ranges from 1% and 20% of that 
of the first normal stress coefficient. Therefore, in general, it is 
believed that 41 and ~1 should always lie between -0.5 and -0.6, 
as verified experimentally by Leal [1975]. It is also known that 
although our knowledge about the second normal stress coeffi- 
cient is still incomplete, the first normal stress coefficient is 
sufficient to provide general behaviors of a non-Newtonlan 
drop, especially when the fluids are weakly non-Newtonian. In 
the present study, we thus fixed both values of 41 and ~ as 
-0.50 to avoid complexity caused by the nondeterministic pa- 
rameter. 

The estimated critical electric capillary number, obtained from 
(36) as a function of the zero-shear-rate viscosity ratio Z, is re- 
presented in Fig. 3(a) and 3(b) for a prolate and for an oblate 
spheroid, respectively. Also displayed in these figures is that 
the critical electric capillary number influenced by the ratio of 
the normal stress differences [3 is compared to that of a Newto- 
nian pair in which other parameters, such as the permittivity 
ratio S and the resistivity ratio R are the same. It can be noted 
that the effect of non-Newtonian elasticity is diminished as the 
viscosity ratio increases. However, when both the phases are non- 
Newtonian, elasticity of the drop phase make the drop either 
stable or not, depending upon the type of deformation. For 
example, as the ratio of the normal stress difference ratio [3 
increases the drop becomes more stable for the prolate-type 
deformation, whereas the trend is reversed for the oblate-type 
deformatiorL In addition, for the prolate-type deformation, com- 
parison with the Newtonian pair shows that a non-Newtonian 
fluid drop in a non-Newtonian fluid is slightly less stable when 
[3 is less than unity, and becomes more stable when [3 increases 
above unity. In the polymer blending technology, it is a well- 
known rule of thumb that the drop phase elasticity is expected 
to reduce the deformation and increase the critical shear rate 
for the drop breakup, while the matrix elasticity should in- 
crease the deformation and decrease the critical shear rates [E1- 
mendorp and Maalcke, 1985]. 

These somewhat complicated results can be understood by 
simply considering F~ c'c~/which is the largest, first contribution 
from the non-Newtonian property and appears in (32). For a 
moment, let us restrict our attention to the stability of a prolate 
spheroid. When F~ e>/is positive, the drop deforms into a pro- 
late spheroid at O(CDe) causing the critical electric capillary 
number Q to decrease. Since we have fixed the value of ~ and 
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~bl in the present analysis, the sign of F~ c'c~/is determined by the 
viscosity ratio and [3. However, the sign is independent of the 
electrical properties of the fluids. The velocity field, and conse- 
quently the deformation of the drop are considerably influ- 
enced by the electrical properties at O(1). However, at O(CDe), 
the behavior of drop is determined solely by the non-Newto- 
nian rheological properties of the fluids. In Fig. 4, the effect of 

and [3 on the sign of F~ c'~) is reproduced. From this figure, it 
can be seen why the drop is stabilized as [3 increases and less 
stable when [3 is smaller than unity. It can be also noticed from 
this figure that the non-Newtonian contribution is vanished, 
and thus, no deformation occurs at O(CDe) for a certain com- 
bination of [3 and X. In this special case, the drop behaves like a 
Newtonian drop although the drop possesses non-Newtonian 
properties, i.e., non-zero normal stress difference. This stability 
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Fig. 5. Contours of F(C~=i) representing the non-Newtonian con- 
tribution to the drop stabfli~. 
. . . .  , r 1 6 2  0 . 5 ; - - ,  01-r 0.55;-~, r  0.5, and 
~ , - -0 .55,  _.._, 01--0.55 and ~1--0.50. 

diagram is depicted in Fig. 5, in which the contours of F~c~)= 
0 are plotted for various combinations of ~ and ~1. Above a 
given contour line, F~ c'~) <0 the non-Newtonian contribution 
makes the drop stable. On the other hand, below the contour 
line, the viscoelasticity acts in the opposite way and the drop 
becomes less stable. 

The Deborah number De of a continuous phase is also an 
important parameter for the stability of a non-Newtonian drop. 
As discussed previously, De is linearly proportional to the elec- 
tric capillary number and the proportionality constant ~ is de- 
termined by the rheological properties of the fluid. As 8 (or 
equivalently, De) increases, the drop becomes more stable in 
the prolate-type deformation, which is illustrated in Fig. 6. The 
stability of an oblate spheroid can be explained by a similar 
consideration of F~ e~ in terms of [3 and De. 

Finally, the effect of the resistivity ratio R on the stability of 
a drop is shown in Fig. 7 in which both the viscosity and per- 
mittivity ratios are fixed at 0.001 and at unity, respectively. Due 
to the fact that the permittivity ratio S is unity, the drop remains 
always stable if the resistivity ratio R is unity. The effect of 
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elasticity is more appreciable for an oblate spheroid compared 
to the case of a prolate spheroid for which the influence of el- 
asticity is small. According to the results of  linear stability an- 
alysis carried out in the present study, Q is very weak fimction 
of R provided that the resistivities of  two phases are quite 
different. 

CONCLUSIONS 

In the present study, we investigated one of the general prob- 
lems concerned with liquid-liquid dispersion; more specifical- 
ly, we studied the effect of non-Newtonian properties on the de- 
formation and breakup of a droplet in a uniform electric field 
from theoretical ~ i n t  of view. In order to obtain an analytic solu- 
tion for the drop shape, the fluids were simply assumed as se- 
cond-order fluids. The inherent nonlinearity of the free bound- 
ary problem was removed by the method of domain perturba- 
tion and a double asymptotic expansion in terms of C and De. 
The s~bility of the steady-s~te drop shape was s~udied by trans- 
forming the C-perturbation into a Py-pertubation, and thus, the 
critical electric capillary number, which separates the stable and 
anstable steady-state solution branches could be determined. 

The theoretical approach suggested that the non-Newtonian 
contributions made the drop either more stable or unstable. As 
the normal stress coefficient of the drop phase increased, the 
stability of the drop was enhanced for a prolate spheroid. How- 
ever, for an oblate drop, the drop stability was deteriorated sig- 
nificantly as the normal stress difference coefficient of the drop 
phase increased. Non-Newtonian contributions to the drop defor- 
mation became small as the viscosity ratio increased. The small 
deformation theory showed that only rheological properties of 
the fluids were involved in determining the type (i.e., prolate or 
oblate) of deformations at O(CDe). 
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